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If this presentation only had a single slide

* We need means of unwinding and protecting against unwinds
« We can implement all of CL-specific control flow with this!

« tagbody/go  This includes non-local jumps
« block/return-from (a secret Common Lisp feature)
« catch/throw

e Unwi nd—protect ° Th|S |nC|UdeS |OOpS

 This includes switches
« This includes error handling
« This includes restart handling

- The above four groups
are implemented
in Common Lisp itself
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Let's talk about control flow

From Wikipedia, the free encyclopedia
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Not to be confused with Flow control (data).

In computer science, control flow (or flow of control) is the order in which 7
individual statements, instructions or function calls of an imperative program c

are executed or evaluated. The emphasis on explicit control flow distinguishes

an imperative programming language from a declarative programming C—b
language.



Let's talk about non-local control flow

Structured non-local control flow [ edit]

Many programming languages, especially those favoring more dynamic
styles of programming, offer constructs for non-local control flow. These
cause the flow of execution to jump out of a given context and resume at
some predeclared point. Conditions, exceptions and continuations are
three common sorts of non-local control constructs; more exotic ones also
exist, such as generators, coroutines and the async keyword.
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Let’s talk about exceptions

Exception support in programming languages | edit]
See also: Exception handling syntax

Many computer languages have built-in support for exceptions and exception handling. This includes
ActionScript, Ada, BlitzMax, C++, C#, Clojure, COBOL, D, ECMAScript, Eiffel, Java, ML, Next Generation
Shell, Object Pascal (e.g. Delphi, Free Pascal, and the like), PowerBuilder, Objective-C, OCaml, PHP (as of
version 5), PL/I, PL/SQL, Prolog, Python, REALbasic, Ruby, Scala, Seed7, Smalltalk, Tcl, Visual Prolog and
most .NET languages. Exception handling is commonly not resumable in those languages, and when an
exception is thrown, the program searches back through the stack of function calls until an exception
handler is found.

Some languages call for unwinding the stack as this search progresses. That is, if function f, containing a
handler H for exception E, calls function g, which in turn calls function h, and an exception E occurs in h,
then functions h and g may be terminated, and H in T will handle E.
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Exception support in programming languages | edit]
See also: Exception handling syntax

Many computer languages have built-in support for exceptions and exception handling. This includes
ActionScript, Ada, BlitzMax, C++, C#, Clojure, COBOL, D, ECMAScript, Eiffel, Java, ML, Next Generation
Shell, Object Pascal (e.g. Delphi, Free Pascal, and the like), PowerBuilder, Objective-C, OCaml, PHP (as of
version 5), PL/I, PL/SQL, Prolog, Python, REALbasic, Ruby, Scala, Seed7, Smalltalk, Tcl, Visual Prolog and
most .NET languages. Exception handling is commonly not resumable in those languages, and when an
exception is thrown, the program searches back through the stack of function calls until an exception
handler is found.

Some languages call for unwinding the stack as this search progresses.jThat is, if function f, containing a

handler H for exception E, calls function g, which in turn calls function h, and an exception E occurs in h,
then functions h and g may be terminated, and H in T will handle E.
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Let’s talk about exceptions

bar ()

foo ()

// execution continues
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Let's talk about conditions

Condition systems | edit]

Common Lisp, Dylan and Smalltalk have a condition system!>3] (see Common Lisp Condition System)
that encompasses the aforementioned exception handling systems. In those languages or environments
the advent of a condition (a "generalisation of an error" according to Kent Pitman) implies a function call,
and only late in the exception handler the decision to unwind the stack may be taken.

Conditions are a generalization of exceptions. When a condition arises, an appropriate condition handler
is searched for and selected, in stack order, to handle the condition. Conditions that do not represent
errors may safely go unhandled entirely; their only purpose may be to propagate hints or warnings
toward the user.[54]
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Let's talk about unwinding the stack
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// execution continues
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Let's talk about restarts
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Let's talk about restarts

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)
“Return 42 -1instead.”
; ) (baz)
Query the user for new numbers.
“Try opening another file.” (bar)

“Abort and return to toplevel.” (fOO)
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Let's talk about restarts

o
-
(invoke-debugger
2
{ . )
9
: ? ﬁ (error ...)
9 division-by-zero (/ 1 0)
2
“Return 42 instead.”
I ” (baZ)
Query the user for new numbers.
“Try opening another file.” (bar)
“Abort and return to toplevel.” (fOO)
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Let's talk about restarts

non-local
jump

division-by-zero

“Try opening another file.”

restart-fn
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(/ 10)
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(foo)

// execution continues
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Let's talk about throwing exceptions

 Construct the exception object

« Unwind the stack immediately
 Stop unwinding when something catches the exception

« Continue execution from that point
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Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

Maybe execute some code
Maybe invoke a restart
Maybe do nothing and return
Maybe unwind the stack to a predefined point
Maybe there are no handlers
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Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point
- Maybe there are no handlers

« Maybe she’s born with it

« Maybe it's Maybelline™

* If there was no transfer of control, return
e ...and maybe enter the debugger to halt the program

L
\
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Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order
« What do the handlers do?

« Maybe execute some code _f
- Maybe invoke a restart
« Maybe do nothing and return o

: : :  signaling = a
« Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she’s born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™
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Let’s talk about signaling conditions

e restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
. What dO the handlers dO7 _ ofaut%mated error recovelryt
- Maybe execute some code ..;" geOﬁrCV\é Ceondgiarsmg B

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.
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Let's talk about conditions versus exceptions
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« Maybe invoke a restart . etc.

« Maybe do nothing and return o
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* message passing
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Let's talk about conditions versus exceptions

Let’s talk about throwing exceptions Let’s talk about signaling conditions
e restarts=a
dynamically scoped
. . e . hani f choi
- Construct the exception object « Construct the condition object i
« Unwind the stack immediately « Call handlers from the stack in order Bhirepia- e
+ Stop unwinding when something catches the exception « What do the handlers do? - P bkt
« Continue execution from that point * Maybe execute some code -~ Source code)
« Maybe invoke a restart i
+ Maybe do nothing and return P —
« Maybe unwind the stack to a predefined point d&namigal_ly scoped
» Maybe there are no handlers hooking mechanism
* Maybe she’s born with it * progress bars
. " - * message passing
Maybe e l\/IaybeIIme + calling asynchronous code
« If there was no transfer of control, return . etc.
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Let’s talk about throwing exceptions Let’s talk about signaling conditions
e restarts=a
dynamically scoped
: . " . hanism of choi
» Construct the exception object « Construct the condition object i
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- Unwind the stack immediately « Call handlers from the stack in order o wopteEdenepdent menns
+ Stop unwinding when something catches the exception « What do the handlers do? s P bkt
« Continue execution from that point * Maybe execute some code ~ Source code)
« Maybe invoke a restart i
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« Maybe it's Maybelline™ bt
+ calling asynchronous code
« If there was no transfer of control, return - etc.

~
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Let’s talk about signaling conditions

e restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
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« Maybe do nothing and return o
 signaling = a
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* message passing
 calling asynchronous code
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Let's talk about signaling conditions

« Maybe unwind the stack to a predefined point
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Let's talk about non-local control flow

« Maybe unwind the stack to a predefined point
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Let's talk about non-local control flow

handler-2

T (error ...)
-

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)




Let's talk about control flow
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Let’s talk about control flow in Common Lisp

handler-2

T (error ...)
-

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)




Let’s talk about control flow in Common Lisp



Let’s talk about control flow in Common Lisp

cif

(if (foo)
(bar)
(baz))
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Let’s talk about control flow in Common Lisp

e if
* taghody/go

(tagbody
10 (print “hello”)
20 (go 10))
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Let’s talk about control flow in Common Lisp

o f
* taghody/go
* block/return-from

(block my-block

(o..)
(... (return-from my-block 42))

(ee))
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Let’s talk about control flow in Common Lisp

i f

* taghody/go

* block/return-from
e catch/throw

(catch ‘quux

(o..)
(... (foo0)) (defun foo ()
(e..))) (throw ‘quux 42))
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Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect

(let ((thing (make-thing)))
(unwind-protect (frob thing)
(cleanup thing)))
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Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

(let ((fn (lambda ...))

(args ...))
(apply fn 1 2 3 args))
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Let's talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from

e catch/throw
 unwind-protect
 lambda/apply ; and funcall

(let ((fn (lambda ...))
(args ...)) (let ((fn (lambda ...)))
(apply fn 1 2 3 args)) (funcall fn 1 2 3))
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Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply
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Let's talk about closures

 Lambda/apply
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Let's talk about closures

(let ((x 42))
(lambda () x))
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Let's talk about closures

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>
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(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)

125



Let's talk about closures

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
3y => 42
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Let's talk about closures

(let ((x 42))
(lambda () x))
s #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
35 => 42

;3 but we can close over more
;3 than just lexical variables!
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Let's talk about non-local control flow in Common Lisp

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
3y => 42

;3 but we can close over more
;3 than just lexical variables!
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Let’s talk about non-local control flow in Common Lisp

(defun foo (x) (funcall x))
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar () ; block bar
.)
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

bar 42))))
..))
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

(bar)
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

(bar)

(bar)
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

.F
(foo) (bar)

(bar)
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))
.F
(foo) (bar)
(bar)
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Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))
.F
(foo) (bar)
(bar)
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Let's talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))

.F
(foo) (bar)

(bar)
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Let's talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

(bar)
55 => 42
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Let's talk about non-local control flow in Common Lisp

(defun foo (x) (funcall x))

* tagbody/go (defun bar ()
* block/return-from (let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))
(bar)

55 => 42
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Let's talk about unwinding in Common Lisp
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(baz)

(bar)

(foo)




Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from

(frob)

(quux)

(baz)

(bar)

(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from

(frob)

(quux)

(baz)

(bar)

(foo)
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e catch/throw

(frob)

(quux)

(baz)

(bar)

(foo)




Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

'a

t"

(quux)

(baz)

(bar)

(foo)
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Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

'a

t‘,

(quux)

(baz)

(bar)

(foo)
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Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

in

t‘,

(quux)

(baz)

(bar)

(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from
e catch/throw
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Let's talk about unwinding in Common Lisp

* tagbody/go ; 1-phase unwind (no search)
* block/return-from ; l1l-phase unwind (no search)
 catch/throw ; 2—-phase unwind (search)
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Let's talk about unwinding in Common Lisp

i f

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
 Lambda/apply
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Let’s talk about control flow in Common Lisp

i f

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
 Lambda/apply
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Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply
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Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
e catch/throw

 unwind-protect

 Lambda/apply
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Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

 unwind-protect
 lLambda/apply
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Let's talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

] e error handling (handler-case, ...)
* unwind-protect

 lLambda/apply
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Let's talk about control flow in Common Lisp

*if * All other CL control flow operators are
» tagbody/go derivatives of those primitives
e block/return-from . Ioopsh(doé doldist, loop, ...) )

* switches (cond, case, typecase, ...
) Cat?h/throw e error handling (handler-case, ...)
* unwind-protect  restarts (restart-case, ...)
 Lambda/apply
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Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

] e error handling (handler-case, ...)
* unwind-protect  restarts (restart-case, ...)

* lambda/apply e This list includes use cases that are
not related to exception handling
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Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

] e error handling (handler-case, ...)
* unwind-protect  restarts (restart-case, ...)

* lambda/apply e This list includes use cases that are
not related to exception handling

 Control flow # exception handling
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Let’s talk about control flow in general

 Control flow # exception handling
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Let’s talk about control flow in general

 Control flow # exception handling
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Let’s talk about control flow in general

* Do not conflate unwinding with throwing exceptions

 Control flow # exception handling
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Let’s talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow

 Control flow # exception handling
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Let's talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding

 Control flow # exception handling
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Let's talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding
* Throwing exceptions is not a primitive operation

 Control flow # exception handling
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Let's talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding
* Throwing exceptions is not a primitive operation

* Proofs: Common Lisp, Dylan, Smalltalk

 Control flow # exception handling
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but wait hold on for just one moment
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Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix A

Proving one-phase unwind in TAGBODY and BLOCK



Let’s talk about non-local control flow in Common Lisp

* tagbody/go ; 1-phase unwind (no search)
* block/return-from ; l1l-phase unwind (no search)
 catch/throw ; 2—-phase unwind (search)

172



Let’s talk about non-local control flow in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)
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Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)
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Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(block foo
(lambda ()
(return-from foo)))
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Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(let ((fn (block foo
(lambda ()
(return-from foo)))))
(funcall fn))

.7
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Let's talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(let ((fn (block foo
(lambda ()
(return-from foo)))))
(funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.

177



Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

; ERROR: Condition CONTROL-ERROR
; was signaled.
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Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

7 ~
IS

; ERROR: Condition CONTROL-ERROR
; was signaled.
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Let’s talk about one-phase unwind in Common Lisp

(block foo
(lambda ()
(return-from foo)))
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Let’s talk about one-phase unwind in Common Lisp

(block foo
.. )
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Let’s talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo

ces)
(setf return-valid-p nil)))
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Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
...) 33 let’s expand the lambda!
(setf return-valid-p nil)))
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Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))
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Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))
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Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%1l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

186



Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%1l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

;5 similar validation scheme applies for TAGBODY /GO
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aka Why Lisp Doesn't Need To Throw Exceptions

Appendix B

Describing UNWIND-PROTECT



Let’s talk about non-local control flow in Common Lisp

» taghody/go
* block/return-from
e catch/throw
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Let’s talk about non-local control flow in Common Lisp

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
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Let's talk about unwinding in Common Lisp

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from (
quux)

e catch/throw

« unwind-protect (baz)
(bar)
(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from
e catch/throw
« unwind-protect (baz)

(quux) (3¢

(bar) »¢

(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)
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Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from (
quux)

e catch/throw

« unwind-protect (baz)
(bar)

(foo)
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Let’s talk about unwinding in Common Lisp

. tagbody /go - (frob)
* block/return-from (quux)
e catch/throw <9
» unwind-protect . (baz)
' (bar)
(>
‘ < (foo)
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aka Why Lisp Doesn't Need To Throw Exceptions

Appendix C

Common Lisp condition system without Common Lisp

(this is the last one | promise)



Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply
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Let's talk about control flow in Common Lisp and Java

o i f o i f

* taghody/go

* block/return-from

e catch/throw

 unwind-protect try/finally

 Llambda/apply *new/.apply()
 throw exception
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Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3J13 and ISO committees for the definition of Common Lisp is even less precise
than a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
ML could be developed for Common Lisp, we believe that a carefully fashioned system of
metacircular definitions can achieve most of the precision of denotational semantics.
Furthermore, a metacircular definition is also more readable and understandable by the
average Common Lisp programmer, since it is written in terms he mostly understands. Finally, a
metacircular definition for Common Lisp special forms enables us to transparently customize
the representation of certain "built-in" mechanisms such as function closures, to enable
sophisticated systems like "Portable Common Loops" to become truly portable.
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Metacircular Semantics for Common Lisp
Special Forms
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Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

o=
L
y » v;

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3J13 and ISO committees for the definition of Common Lisp is even less precise
than a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
ML could be developed for Common Lisp, we believe that a carefully fashioned system of
metacircular definitions can achieve most of the precision of denotational semantics.

Finally, a
metacircular definition for Common Lisp special forms enables us to transparently customize
the representation of certain "built-in" mechanisms such as function closures, to enable
sophisticated systems like "Portable Common Loops" to become truly portable.

203
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Metacircular Semantics for Common Lisp
Special Forms

o

o
Henry G. Baker -
Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436 k
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.
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Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.
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Special Forms
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Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
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Copyright (c) 1992 by Nimble Computer Corporation
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Let's talk about Common Lisp control flow in Java

g—y

metacircular definition for Common Lisp special forms enables us

to enable
sophisticated systems like "Portable Common Loops" to become truly portable.

« Can we port CL control flow to Java?
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Let's talk about Common Lisp control flow in Java

o i f o i f

* taghody/go

* block/return-from

e catch/throw

 unwind-protect try/finally

 Llambda/apply *new/.apply()
 throw exception
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Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| — try/finally

o=
O

*new/.apply()
 throw exception
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Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| - try/finally

* new/.apply()
 throw exception
“I suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.”

o=
O

--- Abraham H. Maslow
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Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| — try/finally

*new/.apply()
https.//github.com/phoe/cafe-latte

o=
O

 throw exception
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yes, it’s seriously the end this time
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