Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Michat “phoe” Herda

i .jl iy

phoe@disroot.org
https://phoe.github.io

If this presentation only had a single sentence

If this presentation only had a single sentence

* We need means of unwinding and protecting against unwinds

If this presentation only had a single slide

* We need means of unwinding and protecting against unwinds

If this presentation only had a single slide

* We need means of unwinding and protecting against unwinds
« We can implement all of CL-specific control flow with this!

If this presentation only had a single slide

* We need means of unwinding and protecting against unwinds
« We can implement all of CL-specific control flow with this!

* tagbody/go

* block/return-from
« catch/throw

« unwind-protect

If this presentation only had a single slide

* We need means of unwinding and protecting against unwinds
« We can implement all of CL-specific control flow with this!

« tagbody/go This includes non-local jumps
« block/return-from (a secret Common Lisp feature)

« catch/throw
« unwind-protect

If this presentation only had a single slide

* We need means of unwinding and protecting against unwinds
« We can implement all of CL-specific control flow with this!

« tagbody/go This includes non-local jumps
« block/return-from (a secret Common Lisp feature)
« catch/throw

This includes loops

This includes switches

This includes error handling
This includes restart handling

unwind-protect

If this presentation only had a single slide

* We need means of unwinding and protecting against unwinds
« We can implement all of CL-specific control flow with this!

« tagbody/go This includes non-local jumps
« block/return-from (a secret Common Lisp feature)
« catch/throw

e Unwi nd—protect ° Th|S |nC|UdeS |OOpS

 This includes switches
« This includes error handling
« This includes restart handling

- The above four groups
are implemented
in Common Lisp itself

Let's talk about me

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

11

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

« Common Lisp enthusiast (#11sp, Lisp Discord, Reddit)

12

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

« Common Lisp enthusiast (#11sp, Lisp Discord, Reddit)
« Author of The Common Lisp Condition System (Apress, 2020)

13

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

« Common Lisp enthusiast (#11sp, Lisp Discord, Reddit)
« Author of The Common Lisp Condition System (Apress, 2020)

« Somewhat capable of writing other programming languages

14

Let's talk about me

 Software engineer at Ericsson (C/C++/Erlang)

« Common Lisp enthusiast (#11sp, Lisp Discord, Reddit)
« Author of The Common Lisp Condition System (Apress, 2020)

« Somewhat capable of writing other programming languages

* | kinda like the topic of control flow

15

Let's talk about me

* | kinda like the topic of control flow

16

Let's talk about control flow

* | kinda like the topic of control flow

17

Let's talk about control flow

From Wikipedia, the free encyclopedia

FALSE

-
Zi>/¢ for(A;B;C)
=1 i
s D
Control tflow - !
' S
-

Not to be confused with Flow control (data).

In computer science, control flow (or flow of control) is the order in which 7
individual statements, instructions or function calls of an imperative program c

are executed or evaluated. The emphasis on explicit control flow distinguishes

an imperative programming language from a declarative programming C—b
language.

Let's talk about non-local control flow

Structured non-local control flow [edit]

Many programming languages, especially those favoring more dynamic
styles of programming, offer constructs for non-local control flow. These
cause the flow of execution to jump out of a given context and resume at
some predeclared point. Conditions, exceptions and continuations are
three common sorts of non-local control constructs; more exotic ones also
exist, such as generators, coroutines and the async keyword.

19

Let's talk about non-local control flow

Structured non-local control flow [edit]

Many programming languages, especially those favoring more dynamic
styles of programming, offer constructs for non-local control flow. These
cause the flow of execution to jump out of a given context and resume at
some predeclared point.nd continuations are
three common sorts of non-local control constructs; more exotic ones also
exist, such as generators, coroutines and the async keyword.

K >

\ |

20

Let’s talk about exceptions

Exception support in programming languages | edit]
See also: Exception handling syntax

Many computer languages have built-in support for exceptions and exception handling. This includes
ActionScript, Ada, BlitzMax, C++, C#, Clojure, COBOL, D, ECMAScript, Eiffel, Java, ML, Next Generation
Shell, Object Pascal (e.g. Delphi, Free Pascal, and the like), PowerBuilder, Objective-C, OCaml, PHP (as of
version 5), PL/I, PL/SQL, Prolog, Python, REALbasic, Ruby, Scala, Seed7, Smalltalk, Tcl, Visual Prolog and
most .NET languages. Exception handling is commonly not resumable in those languages, and when an
exception is thrown, the program searches back through the stack of function calls until an exception
handler is found.

Some languages call for unwinding the stack as this search progresses. That is, if function f, containing a
handler H for exception E, calls function g, which in turn calls function h, and an exception E occurs in h,
then functions h and g may be terminated, and H in T will handle E.

21

Let’s talk about exceptions

Exception support in programming languages | edit]
See also: Exception handling syntax

Many computer languages have built-in support for exceptions and exception handling. This includes
ActionScript, Ada, BlitzMax, C++, C#, Clojure, COBOL, D, ECMAScript, Eiffel, Java, ML, Next Generation
Shell, Object Pascal (e.g. Delphi, Free Pascal, and the like), PowerBuilder, Objective-C, OCaml, PHP (as of
version 5), PL/I, PL/SQL, Prolog, Python, REALbasic, Ruby, Scala, Seed7, Smalltalk, Tcl, Visual Prolog and
most .NET languages. Exception handling is commonly not resumable in those languages, and when an
exception is thrown, the program searches back through the stack of function calls until an exception
handler is found.

Some languages call for unwinding the stack as this search progresses.jThat is, if function f, containing a

handler H for exception E, calls function g, which in turn calls function h, and an exception E occurs in h,
then functions h and g may be terminated, and H in T will handle E.

o

L

&

22

Let’s talk about exceptions

Let’s talk about exceptions

baz ()

bar ()

foo ()

Let’s talk about exceptions

1/0

baz ()

bar ()

foo ()

Let's talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

26

Let's talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

27

Let’s talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

28

Let's talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

29

Let's talk about exceptions

ArithmeticException

1/0

baz ()

bar ()

foo ()

30

Let’s talk about exceptions

1/0

baz ()

bar ()

foo ()

31

Let’s talk about exceptions

bar ()

foo ()

Let’s talk about exceptions

bar ()

foo ()

// execution continues

33

Let's talk about conditions

Condition systems | edit]

Common Lisp, Dylan and Smalltalk have a condition system!>3] (see Common Lisp Condition System)
that encompasses the aforementioned exception handling systems. In those languages or environments
the advent of a condition (a "generalisation of an error" according to Kent Pitman) implies a function call,
and only late in the exception handler the decision to unwind the stack may be taken.

Conditions are a generalization of exceptions. When a condition arises, an appropriate condition handler
is searched for and selected, in stack order, to handle the condition. Conditions that do not represent
errors may safely go unhandled entirely; their only purpose may be to propagate hints or warnings
toward the user.[54]

34

Let's talk about conditions

Condition systems | edit]

Common Lisp, Dylan and Smalltalk have a condition system!>3] (see Common Lisp Condition System)

that encompasses t’ ‘.‘.'.'-:mentioned exception handling systems. In those languages or environments

the advent of a con p=~ | "generalisation of an error" according to Kent Pitman) implies a function call,

and only late in the t gptlﬂn handler the decision to unwind the stack may be taken.

Conditions are a generalization of exceptions.JWhen a condition arises, an appropriate condition handler
is searched for and selected, in stack order, to handle the condition. Conditions that do not represent
errors may safely go unhandled entirely; their only purpose may be to propagate hints or warnings
toward the user.[54]

35

Let's talk about conditions

Condition systems | edit]

Common Lisp, Dylan and Smalltalk have a condition system!>3] (see Common Lisp Condition System)
that encompasses t' ‘;.'.'-:mentioned exception handling systems. In those languages or environments
the advent of a con '-\ . "generalisation of an error" according to Kent Pitman) implies a function call,

and only late in the -ption handler the decision to unwind the stack may be taken.

Conditions are a generalization of exceptions.JWhen a condition arises, an appropriate condition handler
is searched for and selected, in stack order, to handle the condition.JConditions that do not represent
errors may safely go unhandled entirely;Jtheir only purpose may be to propagate hints or warnings

toward the user.[54] ‘\ N

oy,

36

Let's talk about signaling an error

Let's talk about signaling an error

(baz)

(bar)

(foo)

Let's talk about signaling an error

(/ 10)
(baz)

(bar)

(foo)

Let's talk about signaling an error

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

Let's talk about signaling an error

division-by-zero

(/ 10)

(baz)

(bar)

(foo)

41

Let's talk about signaling an error

division-by-zero

"Weldon't do that here”

(/ 10)

(baz)

(bar)

(foo)

42

Let's talk about signaling an error

"Wel

division-by-zero

do that here"

(/ 10)

(baz)

(bar)

(foo)

43

Let's talk about signaling an error

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

44

Let's talk about signaling an error

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

Let's talk about signaling an error

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)
(baz) handler-1
(bar) handler-2

(foo) handler-3

Let's talk about signaling an error

handler-1

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)
(baz) handler-1
(bar) handler-2

(foo) handler-3

Let's talk about signaling an error

handler-2

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar) handler-2

(foo) handler-3

Let's talk about signaling an error

handler-3

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo) handler-3

Let's talk about signaling an error

(signal ...)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

Let's talk about signaling an error

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

51

Let's talk about signaling an error

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

Let's talk about signaling an error

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

53

Let's talk about unwinding the stack

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

54

Let's talk about unwinding the stack

r—>

division-by-zero

handler-2

(error ...

(/ 10)

(baz)

(bar)

(foo)

handler-2

handler-3

55

Let's talk about unwinding the stack

handler-2

(error ..

.)

(/ 10)

(baz)

(bar)

(foo)

handler-2

handler-3

56

Let's talk about unwinding the stack

non-local jump

handler-2

(error ..

.)

(/ 10)

(baz)

(bar)

(foo)

handler-2

handler-3

Y

Let's talk about unwinding the stack

(foo)

Let's talk about unwinding the stack

(foo)

// execution continues

59

Let's talk about restarts

(foo)

// execution continues

60

Let's talk about restarts

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

61

Let's talk about restarts

r—>

division-by-zero

restart-1

restart-2

restart-3

restart-4

(invoke-debugger

. e)

(error ...)

(/ 10)

(baz)

(bar)

(foo)

62

Let's talk about restarts

(invoke-debugger

. e)

ﬁ (error ...)

division-by-zero (/ 1 0)
“Return 42 -1instead.”
;) (baz)
Query the user for new numbers.
“Try opening another file.” (bar)

“Abort and return to toplevel.” (fOO)

63

Let's talk about restarts

r—>

division-by-zero

“Return 42 instead.”

“Query the user for new numbers.”

“Try opening another file.”

“Abort and return to toplevel.”

R
\

(invoke-debugger

. e)

(error ...)

(/ 10)

(baz)

(bar)

(foo)

64

Let's talk about restarts

o
-
(invoke-debugger
2
{ .)
9
: ? ﬁ (error ...)
9 division-by-zero (/ 1 0)
2
“Return 42 instead.”
I ” (baZ)
Query the user for new numbers.
“Try opening another file.” (bar)
“Abort and return to toplevel.” (fOO)

65

Let's talk about restarts

ﬁ (error ...

division-by-zero (/ 1 0)

(baz)

(bar)

(foo)

66

Let's talk about restarts

r—>

division-by-zero

handler-2

(error ...

(/ 10)

(baz)

(bar)

(foo)

handler-2

handler-3

67

Let's talk about restarts

r—>

division-by-zero

“Try opening another file.”

handler-2

(error ...

(/ 10)

(baz)

(bar)

(foo)

handler-2

handler-3

68

Let's talk about restarts

r—>

division-by-zero

“Try opening another file.”

restart-fn

handler-2

(error ...)

(/ 10)

(baz)

(bar)

(foo)

handler-2

handler-3

69

Let's talk about restarts

non-local
jump

division-by-zero

“Try opening another file.”

restart-fn

handler-2

(error ...)

(/ 10)

(baz)

(bar)

(foo)

handler-2

handler-3

70

Let's talk about restarts

(bar)

(foo)

Let's talk about restarts

(bar)

(foo)

// execution continues

72

Let's talk about signaling a non-error condition

Let's talk about signaling a non-error condition

(quux)

(baz)

(bar)

(foo)

Let's talk about signaling a non-error condition

some—-condition (quux)

(baz)

(bar)

(foo)

Let's talk about signaling a non-error condition

ﬁ (signal ...)

some-condition (quux)

(baz)

(bar)

(foo)

76

Let's talk about signaling a non-error condition

ﬁ (signal ...)

some-condition (quux)
(baz) handler-1
(bar) handler-2

(foo) handler-3

77

Let's talk about signaling a non-error condition

handler-1

ﬁ (signal ...)

some-condition (quux)

(baz) handler-1

(bar) handler-2

(foo) handler-3

Let's talk about signaling a non-error condition

handler-2

ﬁ (signal ...)

some-condition (quux)

(baz)

(bar) handler-2

(foo) handler-3

Let's talk about signaling a non-error condition

handler-3

ﬁ (signal ...)

some-condition (quux)

(baz)

(bar)

(foo) handler-3

Let's talk about signaling a non-error condition

ﬁ (signal ...)

some-condition (quux)

(baz)

(bar)

(foo)

81

Let's talk about signaling a non-error condition

r—; _(¥)_/7

some-condition (quux)

(baz)

(bar)

(foo)

Let's talk about signaling a non-error condition

(quux)

(baz)

(bar)

(foo)

Let's talk about signaling a non-error condition

(quux)

(baz)

(bar)

(foo)

// execution continues

84

Let's talk about throwing exceptions

Let's talk about throwing exceptions

 Construct the exception object

86

Let's talk about throwing exceptions

 Construct the exception object

« Unwind the stack immediately
 Stop unwinding when something catches the exception

87

Let's talk about throwing exceptions

 Construct the exception object

« Unwind the stack immediately
 Stop unwinding when something catches the exception

« Continue execution from that point

88

Let's talk about signaling conditions

Let's talk about signaling conditions

 Construct the condition object

90

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order
« What do the handlers do?

91

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order
« What do the handlers do?

L
\

92

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?
« Maybe execute some code

L
\

93

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code
- Maybe invoke a restart

L
\

94

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code
- Maybe invoke a restart
« Maybe do nothing and return

L
\

95

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point

L
\

96

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

Maybe execute some code
Maybe invoke a restart
Maybe do nothing and return
Maybe unwind the stack to a predefined point
Maybe there are no handlers

L
\

97

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point
« Maybe there are no handlers

« Maybe she’s born with it

L
\

98

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point
- Maybe there are no handlers

« Maybe she’s born with it

« Maybe it's Maybelline™

L
\

99

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order

« What do the handlers do?

« Maybe execute some code

- Maybe invoke a restart

« Maybe do nothing and return
« Maybe unwind the stack to a predefined point
- Maybe there are no handlers

« Maybe she’s born with it

« Maybe it's Maybelline™

* If there was no transfer of control, return
e ...and maybe enter the debugger to halt the program

L
\

100

Let's talk about signaling conditions

 Construct the condition object

e Call handlers from the stack in order
« What do the handlers do?

« Maybe execute some code _f
- Maybe invoke a restart
« Maybe do nothing and return o

: : : signaling = a
« Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she’s born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™

101

Let’s talk about signaling conditions

e restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
. What dO the handlers dO7 _ ofaut%mated error recovelryt
- Maybe execute some code ..;" geOﬁrCV\é Ceondgiarsmg B

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™

102

Let's talk about conditions versus exceptions

« restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
- What do the handlers do? - e g ovinen pareimgncomplate
- Maybe execute some code ..f source code)

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™

103

Let's talk about conditions versus exceptions

Let’s talk about throwing exceptions Let’s talk about signaling conditions
e restarts=a
dynamically scoped
. . e . hani f choi
- Construct the exception object « Construct the condition object i
« Unwind the stack immediately « Call handlers from the stack in order Bhirepia- e
+ Stop unwinding when something catches the exception « What do the handlers do? - P bkt
« Continue execution from that point * Maybe execute some code -~ Source code)
« Maybe invoke a restart i
+ Maybe do nothing and return P —
« Maybe unwind the stack to a predefined point d&namigal_ly scoped
» Maybe there are no handlers hooking mechanism
* Maybe she’s born with it * progress bars
. " - * message passing
Maybe e l\/IaybeIIme + calling asynchronous code
« If there was no transfer of control, return . etc.

104

Let's talk about conditions versus exceptions

Let’s talk about throwing exceptions Let’s talk about signaling conditions
e restarts=a
dynamically scoped
: . " . hanism of choi
» Construct the exception object « Construct the condition object i
. . . . forint ti i
- Unwind the stack immediately « Call handlers from the stack in order o wopteEdenepdent menns
+ Stop unwinding when something catches the exception « What do the handlers do? s P bkt
« Continue execution from that point * Maybe execute some code ~ Source code)
« Maybe invoke a restart i
+ Maybe do nothing and return P —
« Maybe unwind the stack to a predefined point d&namigally scoped
» Maybe there are no handlers hooking mechanism
* Maybe she’s born with it * progress bars
« Maybe it's Maybelline™ bt
+ calling asynchronous code
« If there was no transfer of control, return - etc.

~
~N

91

'R »
-

105

Let’s talk about signaling conditions

e restarts =a
dynamically scoped
mechanism of choices

 Construct the condition object - contextdependent acions
. int ti '
- Call handlers from the stack in order . context.dependent means.
. What dO the handlers dO7 _ ofaut%mated error recovelryt
- Maybe execute some code ..;" geOﬁrCV\é Ceondgiarsmg B

« Maybe invoke a restart . etc.

« Maybe do nothing and return o
 signaling = a

» Maybe unwind the stack to a predefined point dynamically scoped
« Maybe there are no handlers hooking mechanism
« Maybe she's born with it * progress bars

* message passing
 calling asynchronous code

e If there was no transfer of control, return .+ etc.

« Maybe it's Maybelline™

106

Let's talk about signaling conditions

« Maybe unwind the stack to a predefined point

107

Let's talk about non-local control flow

« Maybe unwind the stack to a predefined point

108

Let's talk about non-local control flow

handler-2

T (error ...)
-

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)

Let's talk about control flow

handler-2

T (error ...)
N

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)

110

Let’s talk about control flow in Common Lisp

handler-2

T (error ...)
-

(/ 10)

(baz)
« Maybe unwind the stack to a predefined point

(bar)

(foo)

Let’s talk about control flow in Common Lisp

Let’s talk about control flow in Common Lisp

cif

(if (foo)
(bar)
(baz))

113

Let’s talk about control flow in Common Lisp

e if
* taghody/go

(tagbody
10 (print “hello”)
20 (go 10))

114

Let’s talk about control flow in Common Lisp

o f
* taghody/go
* block/return-from

(block my-block

(o..)
(... (return-from my-block 42))

(ee))

115

Let’s talk about control flow in Common Lisp

i f

* taghody/go

* block/return-from
e catch/throw

(catch ‘quux

(o..)
(... (foo0)) (defun foo ()
(e..))) (throw ‘quux 42))

116

Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect

(let ((thing (make-thing)))
(unwind-protect (frob thing)
(cleanup thing)))

117

Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

(let ((fn (lambda ...))

(args ...))
(apply fn 1 2 3 args))

118

Let's talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from

e catch/throw
 unwind-protect
 lambda/apply ; and funcall

(let ((fn (lambda ...))
(args ...)) (let ((fn (lambda ...)))
(apply fn 1 2 3 args)) (funcall fn 1 2 3))

119

Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

120

Let's talk about closures

 Lambda/apply

121

Let's talk about closures

Let's talk about closures

(let ((x 42))
(lambda () x))

123

Let's talk about closures

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

124

Let's talk about closures

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)

125

Let's talk about closures

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
3y => 42

126

Let's talk about closures

(let ((x 42))
(lambda () x))
s #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
35 => 42

;3 but we can close over more
;3 than just lexical variables!

127

Let's talk about non-local control flow in Common Lisp

(let ((x 42))
(lambda () x))
3 #<FUNCTION (LAMBDA ())>

(funcall *) ; (funcall #<FUNCTION (LAMBDA ())>)
3y => 42

;3 but we can close over more
;3 than just lexical variables!

128

Let’s talk about non-local control flow in Common Lisp

Let’s talk about non-local control flow in Common Lisp

(defun foo (x) (funcall x))

130

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar () ; block bar
.)

131

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

bar 42))))
..))

132

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

133

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

(bar)

134

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

(bar)

(bar)

135

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

.F
(foo) (bar)

(bar)

136

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))
.F
(foo) (bar)
(bar)

137

Let’s talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))
.F
(foo) (bar)
(bar)

138

Let's talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from

(lambda () ...) bar 42))))
(foo fn)))

.F
(foo) (bar)

(bar)

139

Let's talk about non-local control flow in Common Lisp
(defun foo (x) (funcall x))

(defun bar ()
(let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))

(bar)
55 => 42

140

Let's talk about non-local control flow in Common Lisp

(defun foo (x) (funcall x))

* tagbody/go (defun bar ()
* block/return-from (let ((fn (lambda ()
(return-from
bar 42))))
(foo fn)))
(bar)

55 => 42

141

Let’s talk about non-local control flow in Common Lisp

Let's talk about unwinding in Common Lisp

Let's talk about unwinding in Common Lisp

(frob)

(quux)

(baz)

(bar)

(foo)

Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from

(frob)

(quux)

(baz)

(bar)

(foo)

145

Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from

(frob)

(quux)

(baz)

(bar)

(foo)

146

Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

(quux)

(baz)

(bar)

(foo)

Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

'a

t"

(quux)

(baz)

(bar)

(foo)

148

Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

'a

t‘,

(quux)

(baz)

(bar)

(foo)

149

Let's talk about unwinding in Common Lisp

e catch/throw

(frob)

in

t‘,

(quux)

(baz)

(bar)

(foo)

150

Let's talk about unwinding in Common Lisp

» taghody/go
* block/return-from
e catch/throw

151

Let's talk about unwinding in Common Lisp

* tagbody/go ; 1-phase unwind (no search)
* block/return-from ; l1l-phase unwind (no search)
 catch/throw ; 2—-phase unwind (search)

152

Let's talk about unwinding in Common Lisp

i f

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
 Lambda/apply

153

Let’s talk about control flow in Common Lisp

i f

» taghody/go

* block/return-from
e catch/throw

« unwind-protect
 Lambda/apply

154

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

155

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
e catch/throw

 unwind-protect

 Lambda/apply

156

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

 unwind-protect
 lLambda/apply

157

Let's talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

] e error handling (handler-case, ...)
* unwind-protect

 lLambda/apply

158

Let's talk about control flow in Common Lisp

*if * All other CL control flow operators are
» tagbody/go derivatives of those primitives
e block/return-from . Ioopsh(doé doldist, loop, ...))

* switches (cond, case, typecase, ...
) Cat?h/throw e error handling (handler-case, ...)
* unwind-protect restarts (restart-case, ...)
 Lambda/apply

159

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

] e error handling (handler-case, ...)
* unwind-protect restarts (restart-case, ...)

* lambda/apply e This list includes use cases that are
not related to exception handling

160

Let’s talk about control flow in Common Lisp

it » All other CL control flow operators are
« tagbody/go derivatives of those primitives

e block/return-from * loops (do, dol1ist, loop, ...)
. catch/throw » switches (cond, case, typecase, ...)

] e error handling (handler-case, ...)
* unwind-protect restarts (restart-case, ...)

* lambda/apply e This list includes use cases that are
not related to exception handling

 Control flow # exception handling

161

Let’s talk about control flow in general

 Control flow # exception handling

162

Let’s talk about control flow in general

 Control flow # exception handling

163

Let’s talk about control flow in general

* Do not conflate unwinding with throwing exceptions

 Control flow # exception handling

164

Let’s talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow

 Control flow # exception handling

165

Let's talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding

 Control flow # exception handling

166

Let's talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding
* Throwing exceptions is not a primitive operation

 Control flow # exception handling

167

Let's talk about control flow in general

* Do not conflate unwinding with throwing exceptions
« Throwing exceptions is a subset of control flow
« Throwing exceptions is not synonymous with unwinding
* Throwing exceptions is not a primitive operation

* Proofs: Common Lisp, Dylan, Smalltalk

 Control flow # exception handling

168

<3

but wait hold on for just one moment

170

Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix A

Proving one-phase unwind in TAGBODY and BLOCK

Let’s talk about non-local control flow in Common Lisp

* tagbody/go ; 1-phase unwind (no search)
* block/return-from ; l1l-phase unwind (no search)
 catch/throw ; 2—-phase unwind (search)

172

Let’s talk about non-local control flow in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

173

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

174

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(block foo
(lambda ()
(return-from foo)))

175

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(let ((fn (block foo
(lambda ()
(return-from foo)))))
(funcall fn))

.7

176

Let's talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

(let ((fn (block foo
(lambda ()
(return-from foo)))))
(funcall fn))
; ERROR: Condition CONTROL-ERROR
; was signaled.

177

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

; ERROR: Condition CONTROL-ERROR
; was signaled.

178

Let’s talk about one-phase unwind in Common Lisp

; 1-phase unwind (no search)
; 1l-phase unwind (no search)

7 ~
IS

; ERROR: Condition CONTROL-ERROR
; was signaled.

179

Let’s talk about one-phase unwind in Common Lisp

(block foo
(lambda ()
(return-from foo)))

180

Let’s talk about one-phase unwind in Common Lisp

(block foo
..)

181

Let’s talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo

ces)
(setf return-valid-p nil)))

182

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
...) 33 let’s expand the lambda!
(setf return-valid-p nil)))

183

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

184

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

185

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%1l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

186

Let's talk about one-phase unwind in Common Lisp

(let ((return-valid-p t))
(unwind-protect
%unwind-tag foo
(lambda ()
(1f return-valid-p
%1l-phase-unwind-to-tag foo0)
(error ‘control-error))))
(setf return-valid-p nil)))

;5 similar validation scheme applies for TAGBODY /GO

187

Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix B

Describing UNWIND-PROTECT

Let’s talk about non-local control flow in Common Lisp

» taghody/go
* block/return-from
e catch/throw

189

Let’s talk about non-local control flow in Common Lisp

» taghody/go

* block/return-from
e catch/throw

« unwind-protect

190

Let's talk about unwinding in Common Lisp

» taghody/go

* block/return-from
e catch/throw

« unwind-protect

191

Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)

192

Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)

193

Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from (
quux)

e catch/throw

« unwind-protect (baz)
(bar)
(foo)

194

Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from
e catch/throw
« unwind-protect (baz)

(quux) (3¢

(bar) »¢

(foo)

195

Let's talk about unwinding in Common Lisp

» taghody/go (frob)
* block/return-from
(quux)
e catch/throw
« unwind-protect (baz)
(bar)
(foo)

196

Let's talk about unwinding in Common Lisp

» taghody/go (frob)

* block/return-from (
quux)

e catch/throw

« unwind-protect (baz)
(bar)

(foo)

197

Let’s talk about unwinding in Common Lisp

. tagbody /go - (frob)
* block/return-from (quux)
e catch/throw <9
» unwind-protect . (baz)
' (bar)
(>
‘ < (foo)

198

Control Flow in Common Lisp

aka Why Lisp Doesn't Need To Throw Exceptions

Appendix C

Common Lisp condition system without Common Lisp

(this is the last one | promise)

Let’s talk about control flow in Common Lisp

e if

* taghody/go

* block/return-from
e catch/throw
 unwind-protect
 Lambda/apply

200

Let's talk about control flow in Common Lisp and Java

o i f o i f

* taghody/go

* block/return-from

e catch/throw

 unwind-protect try/finally

 Llambda/apply *new/.apply()
 throw exception

201

Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3J13 and ISO committees for the definition of Common Lisp is even less precise
than a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
ML could be developed for Common Lisp, we believe that a carefully fashioned system of
metacircular definitions can achieve most of the precision of denotational semantics.
Furthermore, a metacircular definition is also more readable and understandable by the
average Common Lisp programmer, since it is written in terms he mostly understands. Finally, a
metacircular definition for Common Lisp special forms enables us to transparently customize
the representation of certain "built-in" mechanisms such as function closures, to enable
sophisticated systems like "Portable Common Loops" to become truly portable.

202

Let’s talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

o=
L
y » v;

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3J13 and ISO committees for the definition of Common Lisp is even less precise
than a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
ML could be developed for Common Lisp, we believe that a carefully fashioned system of
metacircular definitions can achieve most of the precision of denotational semantics.

Finally, a
metacircular definition for Common Lisp special forms enables us to transparently customize
the representation of certain "built-in" mechanisms such as function closures, to enable
sophisticated systems like "Portable Common Loops" to become truly portable.

203

Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

o

o
Henry G. Baker -
Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436 k
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.

T
“ 204

Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.

<T
®
« Can we port the condition system to Java? e

oy
o

&

205

Let's talk about control flow in Common Lisp and Java

Metacircular Semantics for Common Lisp
Special Forms

Henry G. Baker

Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 986-1436 (818) 986-1360 (FAX)

Copyright (c) 1992 by Nimble Computer Corporation

McCarthy's metacircular interpreter for Lisp has been criticized by Reynolds and others for not
providing precise semantics. Unfortunately, the alternative of English prose currently favored
by the ANSI X3]J13 and ISO committees for the definition of Common Lisp is even less precise
.\ ‘an a metacircular interpreter. Thus, while a system of denotational semantics & la Scheme or
i\ . could be developed for Common Lisp, we believe that a carefully fashioned system of

2tacircular definitions can achieve most of the precision of denotational semantics.

metacircular definition for Common Lisp special forms enables us
to enable

sophisticated systems like "Portable Common Loops" to become truly portable.

<T
®
« Can we port CL control flow to Java? e

oy
o

&

206

Let's talk about Common Lisp control flow in Java

g—y

metacircular definition for Common Lisp special forms enables us

to enable
sophisticated systems like "Portable Common Loops" to become truly portable.

« Can we port CL control flow to Java?

207

Let's talk about Common Lisp control flow in Java

o i f o i f

* taghody/go

* block/return-from

e catch/throw

 unwind-protect try/finally

 Llambda/apply *new/.apply()
 throw exception

208

Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| — try/finally

o=
O

*new/.apply()
 throw exception

209

Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| - try/finally

* new/.apply()
 throw exception
“I suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.”

o=
O

--- Abraham H. Maslow

210

Let's talk about Common Lisp control flow in Java

i f

* taghody/go

* block/return-from
T e catch/throw

| — try/finally

*new/.apply()
https.//github.com/phoe/cafe-latte

o=
O

 throw exception

21

<3

yes, it’s seriously the end this time

213

